Blogger templates

planeta

Cursor

Cursores

TEOREMA COSENO

El teorema del coseno es una generalización del teorema de Pitágoras en los triángulos rectángulos que se utiliza, normalmente, en trigonometría.
El teorema relaciona un lado de un triángulo cualquiera con los otros dos y con el coseno del ángulo formado por estos dos lados:

Teorema del coseno
Dado un triángulo ABC, siendo α, β, γ, los ángulos, y a, b, c, los lados respectivamente opuestos a estos ángulos entonces:
a^2 = b^2 + c^2 - 2bc\cos\alpha\,
En la mayoría de los idiomas, este teorema es conocido con el nombre de teorema del coseno, denominación no obstante relativamente tardía. En francés, sin embargo, lleva el nombre del matemático persa Ghiyath al-Kashi que unificó los resultados de sus predecesores

El teorema y sus aplicaciones

El teorema del coseno es también conocido por el nombre de teorema de Pitágoras generalizado, ya que el teorema de Pitágoras es un caso particular: cuando el ángulo \gamma \, es recto o, dicho de otro modo, cuando \cos\gamma = 0 \,, el teorema del coseno se reduce a:
\,c^2=a^2+b^2
que es precisamente la formulación del teorema de Pitágoras.
 
Fig. 3 - Utilización del teorema del coseno: ángulo o lado desconocido.
El teorema se utiliza en triangulación (ver Fig. 3) para resolver un triángulo, y saber determinar
  • el tercer lado de un triángulo cuando conocemos un ángulo y los lados adyacentes:
c = \sqrt{a^2+b^2-2ab\cos\gamma}.
  • los ángulos de un triángulo cuando conocemos los tres lados:
\gamma = \arccos \frac{a^2+b^2-c^2}{2ab}.
Estas fórmulas son difíciles de aplicar en el caso de mediciones de triángulos muy agudos utilizando métodos simples, es decir, cuando el lado c es muy pequeño respecto los lados a y b —o su equivalente, cuando el ángulo γ es muy pequeño.
Existe un corolario del teorema del coseno para el caso de dos triángulos semejantes ABC y A'B'C'
\,cc' = aa' + bb' - (ab'+a' b)\cos\gamma.

0 comentarios:

Publicar un comentario